Digital Marketing Definitions to Know: 2020 Edition

MarTech News & Trends|

Digital Marketing Definitions to Know: 2020 Edition

Understanding the myriad digital marketing definitions associated with modern customer databases and navigating the continually evolving martech maze are two tall tasks for brands today.

When selecting marketing technology for your department’s martech stack — and, by default, your brand’s entire marketing strategy — you need to ask yourself countless questions:

  • “Do I and other members on my team have the requisite knowledge to own and operate a given data-driven marketing solution on a day-to-day basis?”
  • “Will we need assistance from marketing operations, data scientists, or IT specialists to set up and onboard certain martech (or even manage it over time)?”
  • “Can the customer database software we ultimately go with ‘speak’ with other platforms in our martech stack, or do we need to create custom connections?”

The list goes on and on, of course.

And even when you have clear-cut answers to these questions, there are still other to-do list items to handle: from researching specific martech companies and their offerings to learn which is best for your brand long term, to making a business case for the decided-upon tech to executive leadership.

Like we said: The modern martech landscape — and the innumerable digital marketing definitions and concepts associated with it — can be confusing for marketers in all roles and of all experience levels.

That’s why we created this guide.

20 digital marketing definitions every marketer should know

Below, you’ll find 20 essential digital marketing terms to know — ones that cover core martech features commonly incorporated in the top-tier marketing technologies today (including our customer data platform) and how to make the most of these solutions in your daily promotional efforts.

We could dedicate a whole section solely to marketing technology buzzwords, of which there are many. Given they’re just that, though — buzzwords — chances are you’ve heard most of them, if not all (not to mention knowing them won’t really help you advance your marketing communications anyway).

So, for the sake of utility and time, we’ve listed the most relevant digital marketing definitions and martech concepts that can actually help you make the most of data solutions you implement.

(Note: These digital marketing terms entirely pertain solely to marketing databases — not content management systems, social media marketing automation tools, or the like. While platforms that help you with content marketing, conduct pay-per-click campaigns, and run other facets of your online marketing strategy, this glossary won’t focus on those types of software.)

________

________

Marketing Definition #1: Data-Driven Marketing

digital marketing definitions

Given every single digital marketing definition following this one falls under the data-driven marketing umbrella, we figured we’d get the biggest (albeit probably most obvious) term out of the way first.

Data-driven marketing at its core is the principle that marketers should use customer data and insights to make decisions on how they interact with their various prospects and customers. Given customer expectations today, data-driven marketing is needed to execute on modern marketing.

Embracing this approach across all (and we mean all) of your digital channels is your key to building better brand awareness, getting more prospects into your funnel, improving nurturing efforts to those leads, and converting those individuals into net-new customers you can upsell and cross-sell over time.

If you don’t take advantage of the infinite well of customer data that your competition very likely uses to connect with their customers, you’re stuck in the marketing dark ages, behind the curve, and — if you lack the optimal martech — may very well need to build (or rebuild) your entire stack from scratch.

The focus on the individual has reignited a need for a marketing technology that can handle data in a specific way that enables marketers to:

  • Collect customer data through owned, consent-oriented tactics
  • Unify that first-party data into a centralized, single source of truth
  • Segment general contacts, top prospects, and customers into unique lists
  • Activate data via real-time messaging and long-term campaigns
  • Analyze customer behaviors and engagement to inform your strategy
  • Optimize your marketing messaging to gradually improve your metrics
Discover how BlueConic can help drive your data-driven marketing strategy

Back to Digital Marketing Definitions List

________

Marketing Definition #2: Customer Data Platform

digital marketing definitions

You’re probably wondering, “What exact kinds of martech do leading companies and their marketing teams use today to execute a data-driven marketing program and improve marketing ROI?”

The simple answer? Lots of marketing technologies — both legacy and emerging martech.

That said, there’s really one type of martech that stands out from the crowd and has enabled these organizations’ initiatives to put customers at the center of marketing: the customer data platform (CDP).

There are three flavors of CDP available to marketers today:

  • Relational database: This CDP type offers a highly structured architecture whereby the customer database enforces the relationship(s) between objects. Once that data schema is implemented, you’re forced to work within its structure. For instance, a relational CDP would need to pre-define a relationship between unidentified visitors to a website and a campaign in order to store that anonymous information. 
  • Event-stream database: In many respects, this kind of customer data platform is the polar opposite of a relational database because it collects massive amounts of raw data and stores it all for a limited amount of it because of the volume of data. It’s up to the marketer to sort through the raw data and determine what data should be mapped to the profile graph or be stuck with the event-to-graph schema the CDP ships with.
  • Profile database: This CDP offers greater flexibility and intention than the other two regarding data collection and consolidation. Why? No related tables or stores. This means values can be added easily and scale with no limitations. It also creates and stores true unified profiles at the individual level, instead of just creating a chaotic graph with deconstructed events or enforcing an arbitrary data schema on the data set.

As the CDP Institute’s David Raab noted, interest in CDPs continues to grow among brands — from media and publishing companies to financial services firms — and it’s easy to see why.

Watch our webinar to learn how to get the most from a CDP

Back to Digital Marketing Definitions List

________

Marketing Definition #3: Data Unification and Activation

digital marketing definitions

With fragmented data compiled in a variety of martech and not easily sorted and provided to marketers in need of quick data access to refine advertising and email lists and develop other targeted messaging, companies are turning to CDPs to unify customer data and activate it in core campaigns and channels.

  • To unify customer data is to collect and reconcile data from across systems (CRM, ESP, adtech) and into a single profile for every individual that includes (but is certainly not limited to) their unique behaviors, demographics, events, transactions, campaign history, and lead scoring.
  • To activate customer data is to leverage it in your marketing communications. Every marketing action (on-site personalization, triggered personalized emails following cart abandonment, targeted ads across the web and social networks, to name just a few common examples) is based on unique attributes about and actions related to a particular customer. Since all your marketing technology is connected in a CDP, you can interact with customers based on their intent and in the moment.

Without unified data and integrations across your martech stack, your ability to activate data in a timely manner, through the most appropriate channels, and at the best time is greatly hindered.

This is why CDPs like BlueConic exist.

Marketers that have traditionally had to rely on their IT departments and data science teams to sort through their mountains of data to provide accurate sets that can used for activation have access to unified data in the platform.

The customer data platform — including and especially BlueConic — creates efficiencies in processes and makes it far easier for marketers to access, activate, and analyze data according to their teams and customers’ needs.

(Pretty great, right?)

Discover four common CDP buyer requirements for brands

Back to Digital Marketing Definitions List

________

Marketing Definition #4: Data Enrichment and Cleaning

digital marketing definitions

Data scientists spend an inordinate amount of their time on data cleaning today.

In other words, their hours and skills are spent pulling manual lists of customer data from martech systems and making it usable – transforming the data, correcting records, etc. — to later (turnaround times vary widely) be able to use it to inform marketing tactics.

Think about that for a second: The majority of a high-skilled data scientists’ time boils down to combing through martech systems and eventually handing off requested data sets to their marketing teams for activation.

With a CDP like BlueConic, that data cleaning time — and, in turn, reliance on data science professionals to help you and your team complete a project — can be diminished significantly.

Data scientists can focus their energy and attention on other critical business tasks, like discovering new patterns in customer data and solving business challenges with deep analysis of customer behavior, while marketers can activate data as they see for their digital marketing strategy without the need for assistance.

Once data is clean, marketers know that they can enrich their customer profiles with accurate data. Data enrichment refers to processes used to enhance, refine, or otherwise improve customer data.

Having a customer progressive profile (more on that later), allows you to enrich your data with attributes from other martech systems as the customer continues to interact with you.

Given 46% of marketers cite data hygiene and quality as a barrier to success, this remains a principal task for data scientists (or marketing ops, or whomever handles this at your company) to take on.

Learn why data cleaning must be a top priority post-GDPR

Back to Digital Marketing Definitions List

________

Marketing Definition #5: Data Management

digital marketing definitions

DAMA International said it best with its detailed data management marketing definition:

  • “The development, execution, and supervision of plans, policies, programs, and practices that deliver, control, protect, and enhance the value of data … throughout their lifecycles.”

In other words? Data management is about more than just organizing data wherever it’s housed. It’s also about ensuring that data is of the highest quality.

“That’s what my data management platform is for — right?”

This is an FAQ many-a-marketer asks when evaluating the marketing technology landscape today. It’s also one we’ve addressed many-a-time here (see: our “Do I Need Both?” discussion).

It’s certainly not a bad question. After all, “data management” is right in the name of the platform. But there are limitations to DMPs, and other solutions, like CDPs manage your data differently.

If you’re fine with only having access to anonymized data, data latency (waiting a day or longer for processing), and probabilistic identity matching instead of deterministic matching, you can stick with a DMP.

If you want unified data from all databases in your martech stack to sync in real-time and dynamically updated customer profiles as those contacts’ attributes change over time, a CDP is your best bet.

Get more info on how a CDP and DMP differ from one another

Back to Digital Marketing Definitions List

________

Marketing Definition #6: Customer Segmentation

digital marketing definitions

Once you’ve implemented your platform of choice to help with your data management and unify your customer data, it’s time to learn who the individuals in your once-disconnected databases are and how you can segment them based on their attributes, behaviors, and engagement, among other factors.

At its core, the digital marketing definition for customer segmentation is basically the process of grouping current and potential customers by geographic area, buying behavior, research patterns, shared brand perceptions, purchase history, lead scores, and other known and pertinent data points.

Across industries and verticals (retailers, publishers, DTC companies, etc.), it can be beneficial to individualize their marketing to a single person (more on that momentarily).

But first, it’s worthwhile to understand how you can build segments to drive the outcomes and determine your touch points and communication strategy to these segments across channels.

Customer segmentation can be used to optimize your marketing by:

  1. More efficiently targeting high-volume and high-intent buyers to learn which prospects and customers are and aren’t worth targeting (after testing messaging and campaigns)
  2. Refining your marketing to those segments after testing various messaging until you find the ideal approach: the one that best converts them into new and returning customers
  3. Making it easier for your and others on your team (email marketers, demand gen specialists, etc.) to ultimately connect with your audience in a repeatable, scalable fashion

And with dynamic segmentation in BlueConic, you have the added benefit of the most accurate segments that you can send across your marketing tech stack. Customers are:

  • A) Added to the segment in real time if they meet the criteria
  • B) Removed from the segment if they no longer meet the criteria

With the right technology in place, testing paths of customer lifecycle marketing and segmentation strategies can help improve your relationship with buyers and subscribers over time.

As marketing experts Ann Lewnes and Kevin Lane Keller stated in a piece for MIT Sloan Review, testing is the “new lifeblood” of modern marketing and “it is important to build a culture of testing” — and that’s especially true when it comes to segmenting your contacts in your database.

Read our in-depth customer segmentation guide for marketers

Back to Digital Marketing Definitions List

________

Marketing Definition #7: Personalization

digital marketing definitions

Whether you create 10 customer segments or 1,000, the endgame is to deliver the same thing: personalized messaging to each group of customers to get to your desired outcome.

Regardless of your specific goal — targeting high-value customers (i.e., those who purchase high-priced products, buy a sizable volume of items, or have shown interesting in purchasing) or increasing customer retention through engagement — personalization can help.

When you think of personalization, the first thing that likely think of is a personalized email header:

  • “Hey [customer name here], we’ve got some new deals for you today!”

However, personalization has become so much more than nuanced and tailored than touches like this.

As Kantar Consulting’s J. Walker Smith wrote for the American Marketing Association, advances in martech have allowed traditional marketers to provide more personalized experiences to customers:

  • “Data, digital, algorithms and AI have unlocked the ability to study and engage with individual consumers in personalized and predictive ways. … Predictive personalization is the power unleashed by precision.”

Personalization functionality in BlueConic, for instance, provides marketers the opportunity to customize on-site and in-app messages with specific messaging based on a customers’ lifecycle stage or a segment they belong to.

Using product recommendations, for example, you can tailor the homepage experience to customers by displaying products they buy regularly or have checked out recently and send emails that only show complimentary products to one they’ve already bought.

Through data collection methods in BlueConic, you can determine the type of behavior you want to store in a profile, then build out your marketing action plan to determine who to target, when, and where.

Our machine learning algorithms (something we’ll dive into in a bit) help you deliver one-to-one content and product recommendations to individual customers with great ease and efficiency.

See how travel brands leverage personalization in their marketing

Back to Digital Marketing Definitions List

________

Marketing Definition #8: Individualization

digital marketing definitions

As BlueConic SVP Strategy Cory Munchbach noted, marketers who invest in individualized marketing “know that their consumers deserve to be treated singularly however, wherever, and whenever they engage.”

Personalization is a fantastic method to incorporate in your marketing strategy, but traditionally, marketers have been limited to as it allows you to target groups of people with some or many unique commonalities.

Individualization, meanwhile, is a much more meticulous, hyper-focused digital marketing approach.

Those same machine learning algorithms that help BlueConic customers target buckets of prospects and buyers provide distinct product and content suggestions can help marketers also deliver real-time messaging as individuals’ characteristics and behaviors change dynamically in their customer profiles.

Let’s say someone comes to your website a few times to check out backpacks. They’ve viewed a few different types, hang around your site for an average of 5-plus minutes each session, but, for one reason or another, simply never convert as expected.

Not the ideal result of their engagement you desired, of course. But using the data you know about them, you can target them with an individualized marketing approach that provides a timely, compelling offer.

With tech like ours, for instance, you can tailor messages (e.g., a 15% discount offer or a complimentary product for discount) after a certain amount of time on your site or in a post-visit email to enhance your odds of getting them to convert.

Whereas personalization testing can be accomplished and fine-tuned over a lengthy period of time, individualization is more about meeting the customer “in the moment” to win their business based on a unified view of the customer.

The ability to orchestrate customer lifecycles with martech like a customer data platform to provide the most applicable product recommendations in real time is invaluable.

Get performance marketing insights in our special webinar

Back to Digital Marketing Definitions List

________

Marketing Definition #9: Single Customer View

digital marketing definitions

This is the Holy Grail for many digital marketers today: the ability to have all customers’ personal information, shopping and browsing histories, and other crucial customer data all in one location instead of siloed in separate databases that don’t sync with one another (or easily, at the very least).

We think of the single customer view as a data discipline rather than a simple concept — and one you can master with a customer data platform as the centerpiece of your martech stack.

“A CDP is able to connect all types and sources of customer data, whether internal or external, structured or unstructured, batch or streaming,” guest contributor Jordie van Rijn wrote for Econsultancy. “This allows you to form a much more comprehensive view and to better understand your customers, and act on it even in real time.”

A unified data infrastructure connects your disparate data sources by using consistent IDs and naming conventions and, in turn, makes it much simpler to analyze and activate customer data in real time.

As customers interests and behaviors change, their attributes within their profile will update so you understand the ways in which this particular customer is interacting — and can create cohesive experiences.

For instance, with a single view of the customer, you can optimize advertising dollars by targeting individuals with a product they’ve expressed interest in but haven’t bought.

Alternatively, you can suppress specific ads from individuals who have already purchased a product to ensure you don’t waste ad spend — a major problem for many brands today.

Our CDP is purpose-built to give marketers the tools to build a single view- something that’s critical to improving acquisition, building bespoke customer experiences, and beating the competition.

Learn how DTC brands use customer data to their advantage

Back to Digital Marketing Definitions List

________

Marketing Definition #10: Single Source of Truth

digital marketing definitions

Just as important as it is to achieve a single view of the customer, it’s equally imperative to implement a marketing database that can act as your single source of truth — or, as our team often refers to our customer data platform, a “single flow of truth” that connects databases.

Simply put, if marketing professionals don’t have access to accurate and holistic customer data, how can they be expected to optimize cross-channel messaging and campaigns?

That’s where a single source of truth database comes into play. Having a unified database means marketers can rely on a single data for the most pertinent and up to date customer data:

  • A single source of truth that brings together once-disconnected data points from data management platforms (DMPs), customer relationship management (CRM) software, and other similar marketing databases.

Often, marketers will get asked how many customers their company had last year and year-to-date. Depending on who you ask — an email marketer, a CRM manager, an ad specialist — you’ll get a different number.

Why? Because that customer count is dependent on data available in their respective marketing system.

With marketing teams using an average of 12 solutions to manage data, it only makes sense they desire a platform that brings together all of their customer data in one, single digital locale where everyone who needs access to it can gain it and near-instantaneously activate it as needed.

Find out how you can convince your C-suite to invest in a CDP

Back to Digital Marketing Definitions List

________

Marketing Definition #11: First-Party Data

digital marketing definitions

 

The number of customer data types available to you and your team can certainly be a bit daunting, especially with the recent introduction of “zero-party” data.

The most pertinent place to start — given our customer data platform revolves around helping marketers like you make the most of it — is first-party data.

We think it’s the most important element of every brand’s marketing program today, whether you’re B2B or B2C, startup or enterprise, or another kind of organization altogether.

Simply put, first-party data is the information you collect from and about your audience. As it relates to display advertising, for instance, first-party data has typically been cookie-based.

But first-party data includes info gathered from site analytics platforms, CRMs, consent preferences, purchases, and synthetic properties you derive from these sources of data (like a customer lifetime value score).

All in all, we firmly believe first-party data is the cornerstone of any legitimate marketing strategy today — especially more so than third-party data (which we’ll dive into in a few).

Mastering unification and activation of first-party data is a competitive differentiator for BlueConic customers, given our tech is explicitly architected to manage this data at the individual level.

Discover why first-party data is the future of marketing

Back to Digital Marketing Definitions List

________

Marketing Definition #12: Second-Party Data

digital marketing definitions

Second-party data, on the other hand, is essentially someone else’s first-party data.

Oftentimes, brands will engage similar, non-competing brands — ones in adjacent verticals with similar audiences — to exchange data and, in turn, target new, seemingly interested audiences.

Another way to put it? Second-party data can be commercialized via arrangements with trusted partners who are willing to share their customer data (usually segmented) with you and vice versa.

Let’s say you run a shop that sells customizable baseball hats but want to expand your marketing beyond those in your existing customer databases.

By securing reputable second-party data from, say, a successful baseball equipment store (with whom you’ll obviously have to develop a relationship with first) and perhaps offering them yours in return (or simply paying them), you could identify similar prospects who’ve yet to buy from your brand but fit the ideal customer type or persona, based on their demographic, contextual, and behavioral data.

This modest Marketing Week graphic visualizes the second-party-data-sharing process.

The trick with second-party data is ensuring you get data for customers to whom you can actually market to: those who have provided consent and whose consent remains valid (meaning the individual in question hasn’t “opted out” of the second party’s marketing communications).

Since GDPR, consent management has been the name of the game, so you need to be 110% certain you’re able to market to individuals whose second-party data you’ve obtained.

As long as this is the case, the possibilities for taking advantage of second-party data are essentially endless. The key is to foster and maintain mutually beneficial partnerships with like brands.

Find out how publishers can fuel monetization with a CDP

Back to Digital Marketing Definitions List

________

Marketing Definition #13: Third-Party Data

digital marketing definitions

And last (and definitely least) is third-party data — the kind of customer data you (and many other businesses) have leveraged since the dawn of the internet.

For clarity’s sake (though we suspect you’re familiar), third-party data is basically:

  • Acquired from data-sales houses or other large website and system operators
  • Not typically secured from a single website, but rather many across the web
  • Often licensed to (you guessed it) third parties for use in data and ad targeting

Third-party data has long been commoditized. While it has its time and place to augment your existing data, leveraging third party data won’t give you a competitive advantage or much information about how, when, and why you should interact with your customers.

Furthermore, data privacy laws like GDPR, the CCPA (California’s regulation coming in 2020), and similar measures enforced globally have made it much more difficult to capture third-party data and, therefore, have all but rendered third-party data obsolete.

Our take? Good riddance.

Why? Because first-party data has proven to be far more valuable for marketers and their organizations today, given its secured straight from the customer with their consent and is bespoke to your company.

At the end of the day, it’s more reliable and trustworthy for your specific marketing needs given you and your team obtained said data via your own channels, activities, and campaigns rather than relying on third parties who may not give you the most accurate or quality data you truly need to succeed.

See the trends that led to the rise of customer data platforms

Back to Digital Marketing Definitions List

________

Marketing Definition #14: Real-Time and Batch Processing

digital marketing definitions

Of course, your first-party data needs to be accurate and available for you to use if you want to interact with customer at the right time with the right message.

Real-time processing refers to a system in which input data is processed in milliseconds, so it’s available virtually immediately as feedback for your marketing.

BlueConic has real-time integrations with your martech stack, real-time customer segmentation, and real-time updates to the profile. With data flowing between these systems constantly up to date, you get the most precise picture of your customer at any given moment.

Batch processing, on the other hand, requires a bit more patience on your part (or that of your analytics or data science team). Data is previously collected in various jobs, then uploaded in a single batch (i.e., at a given time interval).

Since this is a scheduled update as opposed to a dynamic one, it (typically) means you don’t get instant, real-time access to data changes for existing contacts — a delay that can potentially hurt your bottom line if you’re unable to activate the data in urgent messaging and campaigns.

While there is a time and place for batch processing— a retailer doesn’t need to update a customer’s marital status in real-time for example — it’s important that marketing technology is holding marketers back from real-time processing.

“Making the shift from batch [processing] to algorithmic is like going from the age of propeller flight to jet engines,” McKinsey noted in recent research. “And the implications are just as momentous.”

Develop a real-time marketing plan with help from our guide

Back to Digital Marketing Definitions List

________

Marketing Definition #15: Customer Lifecycle Orchestration

digital marketing definitions

The customer lifecycle and customer journey: Two entirely separate marketing concepts that are too often interchangeably used by too many professionals today — including marketers.

While we used that blog post to comb over the details that distinguish the two marketing terms, we’ll focus solely on the latter here — and why it’s a crucial approach to implement.

Customer lifecycle orchestration is the next frontier of marketing, whereby all interactions in all touch points are a direct result of where each individual customer is on her unique journey.

Gone are the days of planning and executing on workflow-based, static, outbound campaigns for advertising, email, and direct marketing. Taking your individual customer’s preferences and journeys into account, you can build out meaning experiences for them based on said journey by setting up lifecycle marketing.

The results of this renewed focus? A likely increase in a vital metric: lead-to-customer conversion.

Pinpointing the perfect place and time to meet your customers with that compelling message for a product for which buying intent is substantial is the heart and soul of customer lifecycle orchestration.

Overall, it’s an approach that exhibits the value of “small” data for your marketing.

Learn how the customer lifecycle and customer journey differ

Back to Digital Marketing Definitions List

________

Marketing Definition #16: Progressive Profiling

digital marketing definitions

Let’s fast forward to the future: It’s 2020 (or 2021, or 2022, depending on when you’re reading this). You have both a single source of truth and single customer view of all customers in your database.

The customer profile you long wanted is here. So … pop the champagne — right?

Not quite yet — not until persistent and progressive profiling is set up in your marketing technology to keep that single customer view as fresh, up-to-date, and accurate as possible at all times.

Persistent profiles create a comprehensive view of each customer by capturing data from multiple systems, linking information related to the same customer, and storing the information to track behavior over time. This data doesn’t arbitrarily delete after a certain amount of time.

Progressive profiling is to build on the same persistent profiles over time with order data, browsing behaviors, and more, making the information on your customers richer progressively over time. Profile merging from your various databases into your single source of truth — ideally, a CDP — helps in keeping info in one central profile precise.

With progressive profiling functionality in BlueConic, for example, a retailer can track customer purchases over time. Say a customer purchases a baby crib this year. In four years, they can email or target this customer on social with toddler bed offers.

The value of a progressive profile is to be able to store an incredible amount of data at an individual level so that you can build out customer profiles over time. The ability to understand where they were and where they might be going can only happen in persistent, progressive profiles.

Find out more about why persistent profiles in CDPs matter

Back to Digital Marketing Definitions List

________

Marketing Definition #17: Identity and Identifiers

digital marketing definitions

This is yet another subject we’ve discussed at length on the BlueConic blog.

With that in mind, here’s how BlueConic SVP Strategy Cory Munchbach differentiates these customer data terms:

  • Identity refers to an individual person, known or unknown, whose attributes change.
  • An identifier is info that guides your quest to recognize specific individuals in your database.

The former marketing term is fairly basic. The latter is where some marketers trip up.

“An identifier might be an anonymous cookie ID, a device ID, an email address, or a customer record,” Munchbach notes. “Each of these can be useful in their way, but they are decidedly not all created equal in terms of marketing utility, and certainly not when it comes to privacy.”

Given identifiers can vary from one martech solution to another, it’s imperative for markets such as yourself to have a system that helps consolidate naming conventions for them to a more uniform set. This, in turn, is the only real way to get the complete, 360-degree view of a given contact.

One of many problems you could run into without this organized data collection is having multiple profiles for the same individual. You have different identifiers from different software that don’t speak the same language. Therefore, you have a flaw in your overall database marketing.

This is reason #4,532 why we built BlueConic.

Identity resolution is something we specialize in, thanks to our CDP’s ability to understand and unify all first-party data for customers and their associated identifiers.

Discover more differences between identity and identifiers

Back to Digital Marketing Definitions List

________

Marketing Definition #18: Consent Management

digital marketing definitions

General Data Protection Regulation defines consent as, “Any freely given, specific, informed and unambiguous indication of the data subject’s wishes by which he or she, by a statement or by a clear affirmative action, signifies agreement to the processing of personal data relating to him or her.”

Consent management platforms, therefore, are marketing tech tools whose sole purpose is collecting and updating that consent over time — something we’ve built as a core feature in BlueConic.

Our CDP gives marketers capabilities to manage privacy consent for their channels and for individuals, with tools for marketers let their customers manage their own privacy. This includes tools to implement privacy management for GDPR (and CCPA, and the countless other consumer protection laws).

Having a system in place to control which prospects and customers see which messaging (form fields, page copy, on-site dialogues, etc.) based on consent provided (or removed) is how you avoid those pesky fines the EU is handing out to GPDR violators.

Check out our webinar to learn how to comply with GDPR

Back to Digital Marketing Definitions List

________

Marketing Definition #19: AI and Machine Learning

digital marketing definitions

There’s still a fair amount of confusion surrounding these digital marketing terms, so let’s dive right in:

  • Artificial intelligence (AI) refers to a computer’s ability to process info, find patterns, make decisions, and even predict future outcomes — to function like a human brain. AI embedded in machines enables robots to sort and carry items, autonomous cars and trucks to drive, and industrial devices to react and decide how to move. Marketers like you use AI to process enormous amounts of customer data to identify customers and predict customer needs, behaviors, and reactions.
  • Machine learning (ML) is a branch of AI in which algorithms and models trained on thousands or millions of data samples help brands make better decisions or predictions. BlueConic uses machine learning to determine optimal product and content recommendations for our customers’ audiences. Ecommerce companies, major media brands, and professional sports teams use our machine learning functionality to serve up relevant, timely messaging to customers.

If we want to go a layer deeper, there’s also — well — deep learning: yet another subset of AI.

Specifically, this is a type of machine learning that enables computer models to examine and classify images, text, or sound. By learning directly from thousands or millions of labeled data sets and neural network architectures, these models can learn to perform tasks such as reading X-rays, driving autonomous cars, recognizing speech, and much more.

For marketing, deep learning can help with tasks like real-time bidding and chatbots — technologies that are gaining a lot of traction across certain industries and will continue to grow in popularity.

The use of AI in marketing may seem daunting to some digital professionals today, but you are probably using AI within some of your marketing technologies without even realizing it. For instance, social listening tools use deep learning to garner insights.

To take full advantage of AI, you need a unified profile database that you can run models on and be able to store the output of models in. BlueConic customers succeed with AI Workbench, designed to create operational efficiencies for you and your data science team when applying AI to marketing.

Master AI and machine learning basics in our blog post

Back to Digital Marketing Definitions List

________

Marketing Definition #20: Predictive Analytics and Models

digital marketing definitions

Once you adopt the AI marketing mindset, you can work with your data science team to develop and deploy machine learning models of your own to improve conversion efforts.

Predictive machine learning models use customer data as an input to predict what customers will do in the future. But often, with data siloed in various marketing technology, it’s impossible or extremely time consuming to get all relevant customer data in one place before even beginning to build models (see data cleaning definition).

For instance, data scientists and marketing teams with BlueConic in place can use AI Workbench to build and run predictive models and gain predictive analytics against their unified profile database that is continually being updated with data from systems it’s connected to.

AI workbench gives you the opportunity to act on the outcome of your predictive models by attaching scores to each individual profile. Since segments are updated in real time, you can use any combination of profile attributes and predictive scores to market to specific individuals at the right time.

  • If you want to predict customer churn, import your propensity model to AI workbench to start attaching propensity scores to profiles. Then, you might offer segments of high-risk for churn customers special discounts through email, on-site, or through ads.
  • If you want to forecast customer lifetime value (CLV) for an individual to determine their long-term profitability, there’s an out-of-the-box model you can run. As a marketer, you have the ability to adjust parameters on the model (for instance, time frame in which you want to use data to calculate the CLV) or data scientists could tweak the model in our open python notebook.
  • If you want to conduct an RFM analysis to see which customers are your most valuable at a given moment in time — that’s right — we’ve got a pre-set model for that as well. You might create premium experiences for your best customer with high RFM and high CLV.

Incorporating the output of machine learning into your business can help you improve ROI.

Read how AI powers data-driven marketing strategies

Back to Digital Marketing Definitions List

Next step: Adding to (or taking from) your martech stack

Some of these modern marketing concepts are likely ones you were already well aware of (you’re a data-driven marketer, after all). But some of these digital marketing terms may be marketing features you didn’t know existed today — ones possibly missing from your current martech stack.

If this is the case for you, your next steps (after mastering these marketing definitions) are clear:

  1. Pinpoint the specific gaps and problem area in your current marketing tech
  2. Research customer marketing software that could resolve those pain points
  3. Make the case for your preferred martech to your brand’s leadership team

If, during the first two steps, you realize your existing martech can’t unify your data and activate it cross-channel, your customer database software choice is already made: It’s time for a CDP.

customer data platform business case

See what BlueConic can do for you.

Whether you’re looking for operational efficiencies or improved marketing effectiveness through data activation, our customer data platform can help.